A ??Big Bang?? model of colon cancer is challenging current thinking about how tumors grow.
Natural selection is thought to govern tumor growth, which means that the cells present in a full-grown tumor are the most evolutionarily fit, or likely to survive. But the Big Bang model asserts that when a mutation occurs is more important than its evolutionary fitness in determining its prevalence in a full-grown tumor.
Christina Curtis, PhD, assistant professor of medicine and of genetics at the Stanford University School of Medicine, is the senior author of a paper describing the new model. The lead author is Andrea Sottoriva, PhD, former postdoctoral scholar at the University of Southern California. Curtis conducted most of the research for the paper as an assistant professor of preventive medicine at USC, in collaboration with Darryl Shibata, MD, professor of pathology there.
The paper was published online Feb. 9 in Nature Genetics.
The Big Bang model could be used to identify growth-pattern differences at points very early in the life of a tumor, at the resolution of just a few thousand cells. The researchers found that differences in early growth patterns were associated with whether the cells became a benign or malignant tumor: If growth was ordered, the cells would likely grow into an adenoma, or a benign tumor. But if the growth trajectory was disordered, the cells were likely to grow into a malignant, or cancerous, tumor.
The researchers determined that early disordered growth patterns led to patterns of genetic variegation in mature, malignant tumors but not in benign adenomas. Curtis added that these findings suggest that tumors are ??born to be bad,?? and malignant potential is determined early. Cell mixing in the nascent tumor can give rise to detectable patterns of genetic variegation that could potentially serve as a biomarker, enabling early detection of cancerous growths, Curtis said.